Tuition fee: Not specified
Start date: September  2014, January  2015, April  2015, September  2015
Duration full-time: 36 months
Languages:
  • English
Location:
Disciplines:
Delivery mode: On Campus
Educational variant: Part-time, Full-time
Project type: Open

Show more

Your Details
Thank You

Become a StudyPortals member and get access to exclusive information, like scholarships and student reviews, related to your favourite programme!

Please enter your full name.

Something went wrong. Please try again here.

Confirmation e-mail address does not match.

Confirmation e-mail address does not match.

An account with this e-mail already exists. Please log in here.

Are you already a StudyPortals Member?
Find all members only information here

Next

Thank you! Please check your e-mail to activate your account. Once your membership account is activated, you can find all information here.

You can also find alternative PHDs here

Description

Advertisement

We can supervise PhD projects in topics that relate to our main areas of research, which are:

Bio-energy

Our work spans the whole supply chain from growing novel feedstocks (various biomass crops, algae etc), processing them in novel ways, converting them into fuels and chemical feedstocks and developing new engines to use the products. We seek to consolidate biofuels research through translational research activities with a focus on:

Refining and promoting current or near-market technologies that can be applied efficiently or effectively at relatively small scales in northern and western Europe and similar agro-climatic zones worldwide

The insertion of biotechnology into the development of environmentally sustainable, truly low-carbon second generation biofuels produced both from non-edible crops suited to production on otherwise marginal land in all climate zones and from the organic matter in municipal waste

The development of a unique large-scale molecular biology characterisation facility, to provide metagenomics/metaproteomics support to the energy and environment sector nationwide

Pioneering some of the first large-scale technologies ever devised for directly removing CO2 from the atmosphere and trapping it in permanent stores in organic sediments.

The Centre for Renewable Energy from Land is being established at Cockle Park Farm and has an innovative anaerobic digestion facility. The Centre will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues. It will also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over both the limited remaining resources of fossil fuels and the impact of using fossil fuels for energy on the environment.

Newcastle University has been awarded a Queens Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including: the application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines; domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils; biowaste methanisation; biomass and biowaste combustion, gasification; biomass co-combustion with coal in thermal power plants; CO2 capture and storage for thermal power systems; trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy); engine and power plant emissions monitoring and reduction technology; novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine.

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology. Key areas of research include: biomineralisation; liquid organic hydrides; and adsorption onto solid phase, nano-porous metallo-carbon complexes.

Power electronics, drives and machines

This is one of the most rapidly developing areas of electrical power engineering, focusing on creating viable scale in power electronics and the developments this technology enables. Research is fuelled by the move towards more electric and the desire for new and renewable energy generation. Our researchers use facilities and equipment located in the Centre for Advanced Electrical Drives to prototype leading edge solutions that meet the highest industrial standards. Our world-leading research covers several areas including: higher output fully pitched switched reluctance drives; the exploitation of insulated compacted iron powder for novel and improved performance machines; fault tolerant machines; power electronic converters; sensors and drive controllers for safety critical applications; and low cost drives with reduced sensor requirements to create very low cost solutions and very high speed.

Sustainable development and use of key resources

This research has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation. Processes have been developed to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an IChemE AspenTech Innovative Business Practice Award. Major funding has been awarded for the development of fuel cells (Newcastle is a key member of the SUPERGEN Fuel Cell Consortium) for commercial application and this has led to both patent activity and highly-cited research. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

For more information about staff specialisms please visit the Sir Joseph Swan Centre for Energy Research.

Contents

The Science, Agriculture and Engineering Graduate School provides training in professional/key skills and research techniques, supports personal development and hosts postgraduate events.

Requirements

An upper-second-class Honours degree and/or a masters, or international equivalent, in a relevant subject.

Applicants whose first language is not English require IELTS 6.5, TOEFL 90 (Internet-based), Pearson's PTE Academic Test 62 or equivalent.

International applicants may require an ATAS (Academic Technology Approval Scheme) clearance certificate prior to obtaining their visa and to study on this programme, applicants will be informed of this in the offer letter.

English Language Requirements

IELTS band: 6.5
TOEFL iBT® test: 90

IMPORTANT NOTE: Since April 2014 the ETS tests (including TOEFL and TOEIC) are no longer accepted for Tier 4 visa applications to the United Kingdom. The university might still accept these tests to admit you to the university, but if you require a Tier 4 visa to enter the UK and begin your degree programme, these tests will not be sufficient to obtain your Visa.

The IELTS test is most widely accepted by universities and is also accepted for Tier 4 visas to the UK- learn more.

Members only information

Scholarships

Please sign in to have access to members only information like related scholarships, student reviews etc. Not a member yet? Create a StudyPortals membership account now!

Reviews

Please sign in to have access to members only information like related scholarships, student reviews etc. Not a member yet? Create a StudyPortals membership account now!

Create a free account now!

  • Save and compare your favourite study programmes
  • Apply for the
    € 1000 scholarship
    awarded by StudyPortals each three months
  • Receive personal updates helping you to find the right study programme for you
Sign up for free or log in

IELTS

You are normally required to take an English Proficiency Test.

Most Universities recognise the IELTS test.

Take IELTS test
IELTS test

Apply for a € 1,000 Scholarship from StudyPortals now Awarded every three months

more information

Welcome to StudyPortals chat
Thank you
Thank you for your question. We will get back to you soon! The reply will be sent to your account which you can activate via the e-mail you just received. Find more PhD programmes
More info about doing a PhD
abroad?
Chat with us!
More info about doing a PhD
abroad? Ask a question
to our PhD advisors!
Chat with us!
Ask a question to our
PhD advisors! Click here
anywhere